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The Galois group of a polynomial

Let K be a field, and F (x) ∈ K [x ] separable of degree n (but
possibly reducible).

Then F (x) has n distinct roots α1, · · · , αn ∈ K .

Let SplK (F ) = K (α1, · · · , αn), a splitting field of F over K .
It is a Galois extension of K : normal because splitting field,
separable because F is separable.

Definition

GalK (F ) = Gal(SplK (F )/K ).

Remark

Conversely, any Galois extension of K is the splitting field of
some separable polynomial ; no loss of generality.
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Reminder: What does GalK (F ) look like?

Let σ ∈ GalK (F ) = Gal(K (α1, · · · , αn)/K ).

σ is completely determined by what it does to the
generators α1, · · · , αn of the extension.

For each j , σ(αj) is again a root of F , because σ is a
K -automorphism so preserves rootness in K [x ].

; σ induces a permutation of the roots of F , and this
permutation characterises σ.

; We view GalK (F ) as a subgroup of Sn.
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Orbits and transitivity

Definition (Orbit)

Let αj be a root of F . Its orbit under G = GalK (F ) is

{σ(αj) | σ ∈ G} ⊆ {Roots of F}.

The orbits form a partition (disjoint union) of the set of roots
of F .

Definition (Transitive)

We say that G is transitive if there is only one orbit.

Equivalently, this means that for all j , k , we can find σ ∈ G
such that σ(αj) = αk .
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Factors = Orbits

Theorem

Let O be the set of orbits. Then for each orbit o ∈ O, the
polynomial Fo(x) =

∏
α∈o

(x − α) lies in K [x ] and is irreducible.

Therefore, the complete factorisation of F (x) in K [x ] is

F (x) =
∏
o∈O

Fo(x)

(assuming F is monic, else we get the rescaled monic version).

Proof.

Let αj be a root of F , and let o ∈ O be its orbit. By the
theorem on Galois extensions, Fo(x) is the min poly of α
over K .
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Factors = Orbits

Theorem

Let O be the set of orbits. Then for each orbit o ∈ O, the
polynomial Fo(x) =

∏
α∈o

(x − α) lies in K [x ] and is irreducible.

Therefore, the complete factorisation of F (x) in K [x ] is

F (x) =
∏
o∈O

Fo(x)

(assuming F is monic, else we get the rescaled monic version).

Corollary

F is irreducible over K ⇐⇒ GalK (F ) is transitive.
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Factors = Orbits

Example

Let K = Q, F (x) = (x2 − 2)(x2 − 3).
The roots of F are ±

√
2, ±
√

3, so F is separable.

SplQ(F ) = Q(
√

2,−
√

2,
√

3,−
√

3) = Q(
√

2,
√

3).
We saw in the previous chapter that # GalQ(F ) = 4, with
elements σ :

√
2 7→ ±

√
2,
√

3 7→ ±
√

3, but never
√

2 7→ ±
√

3
as they must preserve rootness of x2 − 2, x2 − 3 ∈ Q[x ].

; Two orbits: {
√

2,−
√

2} and {
√

3,−
√

3}.

; Two irreducible factors over Q:
(x −

√
2)(x +

√
2) = x2 − 2 and (x −

√
3)(x +

√
3) = x2 − 3.
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Factors = Orbits

Example

Keep the same F , but view it as an element of K [x ] where
K = Q(

√
2).

Then GalK (F ) = Gal(K (
√

3)/K ) ' Z/2Z flips the sign of
√

3
but can no longer touch

√
2

; 3 orbits: {
√

2}, {−
√

2}, and {
√

3,−
√

3}

; 3 irreducible factors over K : x −
√

2, x +
√

2, and x2 − 3.
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Reminders on permutations
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The example we will use in this section

Fix n ∈ N.

We are going to review a few concepts about permutations,
i.e. elements of Sn.

In this section, for examples, we will take n = 6 and τ ∈ S6

the permutation

1 7→ 4, 2 7→ 6, 3 7→ 3, 4 7→ 5, 5 7→ 1, 6 7→ 2.
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Cycles

Definition (Cycle)

Let k 6 n. A k-cycle is a permutation c ∈ Sn of the form

x1 7→ x2 7→ · · · 7→ xk 7→ x1
for some distinct x1, · · · , xk ∈ {1, 2, · · · , n} called the support
of c, and such that c fixes all the other points of {1, · · · , n}.
Notation: c = (x1, x2, · · · , xk).

Theorem

Any permutation can be decomposed as a product of cycles
with pairwise disjoint supports.

Proof.

Look at the orbits of the permutation.
(Image: we have a box of elastic bands, and we are pulling the
bands out of the box, one at a time.)

Example

Our permutation τ ∈ S6 decomposes as

τ = (1, 4, 5)(2, 6)(3).

Usually, we do not write the 1-cycles since they are the
identity, so

τ = (1, 4, 5)(2, 6).
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Order

Proposition

Let σ ∈ Sn have cycle decomposition k1 + k2 + · · · , meaning a
k1-cycle, a k2-cycle, · · · . Then σ has order lcm(k1, k2, · · · ).

Proof.

The order of a k-cycle is k .
Besides, cycles with disjoint supports commute.

Example

We have seen that the cycle decomposition of τ is 2 + 3 (or
2 + 3 + 1 if you prefer), so the order of τ is

lcm(2, 3)
(
or lcm(2, 3, 1)

)
= 6.
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Signature

Theorem

There is a sign morphism ε : Sn −→ {±1} characterised by

ε(k-cycle) = (−1)k+1.

Mnemonic: It would have been easier if ε(k-cycle) = (−1)k ;
but 1-cycles are the identity so they must have sign +1.

Example

ε(τ) = ε
(
(1, 4, 5)(2, 6)

)
= ε
(
(1, 4, 5)

)
ε
(
(2, 6)

)
= +1×−1 = −1.

Permutations with ε = +1 are called even, and those with
ε = −1 are called odd.

Note that a k-cycle is even when k is odd, and vice-versa. /
Nicolas Mascot Galois theory



The alternating group An

Definition (Alternating group)

The alternating group is An = Ker ε 6 Sn.

In other words, it is the subset of even permutations.
Actually, An is normal in Sn since it is a kernel.

Remark

As soon as n > 2, ε is surjective, so #An = 1
2
#Sn = n!

2
.

Theorem

If n > 5, then An is a simple group (has no nontrivial normal
subgroups).
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When is GalK (F ) 6 An?
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The discriminant returns

Let again F (x) ∈ K [x ] separable.

Theorem

GalK (F ) 6 An ⇐⇒ discF is a square in K .

See notes for the proof.

Remark

discF 6= 0 since F is separable.

Example

Let F (x) = x3 − 6x − 2 ∈ Q[x ].
Then disc F = −4(−6)3 − 27(−2)2 = 756 = 223371 is not
zero so F is separable, but is not a square so GalQ(F ) 66 A3.
Besides F is irreducible over Q (Eisenstein) so GalQ(F ) is
transitive. The classification of the subgroups of S3 shows that

GalQ(F ) = S3.
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The discriminant returns

Let again F (x) ∈ K [x ] separable.

Theorem

GalK (F ) 6 An ⇐⇒ discF is a square in K .

See notes for the proof.

Remark

discF 6= 0 since F is separable.

Example

Let again F (x) = x3 − 6x − 2 but seen in R[x ] this time.
Then still discF = 756 6= 0, but this time disc F is a square
in R, so GalR(F ) 6 A3.
(In fact, all 3 roots of F are real, so SplR(F ) = R itself, so
actually GalR(F ) = {Id}.)

Nicolas Mascot Galois theory



Dedekind’s theorem
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Dedekind’s theorem

Theorem

Let F (x) ∈ Z[x ] monic and separable, and let p ∈ N prime.
Suppose the factorisation F (x) =

∏
j Fj(x) of F (x)

in (Z/pZ)[x ] involves no repeated factors. Then GalQ(F )
contains an element whose cycle decomposition is

(deg F1) + (deg F2) + · · · .

See notes for the proof.

Remark

Since Z/pZ is perfect, F mod p has repeated factors iff.
disc(F mod p) = 0.
But disc F is essentially defined as a determinant in the coefs
of F and F ′, so disc(F mod p) = disc(F ) mod p, so F has
repeated factors mod p iff. p | discF .
As discF 6= 0, this only happens for finitely many p.
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Dedekind’s theorem

Theorem

Let F (x) ∈ Z[x ] monic and separable, and let p ∈ N prime.
Suppose the factorisation F (x) =

∏
j Fj(x) of F (x)

in (Z/pZ)[x ] involves no repeated factors. Then GalQ(F )
contains an element whose cycle decomposition is

(deg F1) + (deg F2) + · · · .

See notes for the proof.

Remark

We can try various primes p with the same F .
Cebotarev’s densitity theorem states that when we do so, we
hit elements of GalQ(F ) in a uniform way.
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Practical factoring mod p

To apply Dedekind, we need to be able to factor in Z/pZ[x ].

Theorem

Let G (x) ∈ Z/pZ[x ].

G has repeated factors iff. gcd(G ,G ′) 6= 1.

G has factor(s) of deg 1 iff. G has roots.

More generally, for each d ∈ N, G has factors of
degree | d iff. gcd(G , xp

d − x) 6= 1.

Proof.

The point is that xp
d − x is the product of all monic irreducible

polynomials of degree | d in Z/pZ, so taking the gcd filters
the factors of G of degree | d . See notes for details.
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Practical factoring mod p

Example

Let F (x) = x5 − x − 1. We find disc F = 2869 = 19× 151, so
we can use any p 6∈ {19, 151}.
Let us factor F mod p = 2. 2 - 2869, so no repeated factors.
The possible roots at 0 and 1, but none is a root, so no factor
of degree 1. By Euclid, we find gcd(F , x4 − x) = x2 + x + 1,
so we have found the irreducible factor x2 + x + 1 of F , and F
has no more factors of degree | 2.
So F mod 2 factors as 2 + 3; by Dedekind, GalQ(F ) 6 S5

contains an element of the form (∗, ∗)(∗, ∗, ∗).

Let us now try p = 3. Again 3 - 2869 so no repeated factors.
The possible roots are 0, 1, 2, but none of them is a root.
Besides, we find gcd(F , x9 − x) = 1, so F mod 3 actually has
no factors of degree | 2. Therefore F mod 3 is irreducible, so
GalQ(F ) contains a 5-cycle by Dedekind.
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Proving that the Galois group is Sn

Proposition

Let G 6 Sn be transitive. If G contains a 2-cycle and an
(n − 1)-cycle, then G = Sn.

Proof.

WLOG (relabel), the n − 1-cycle is c = (1, 2, · · · , n − 1) ∈ G .
Let t = (i , j) ∈ G be the 2-cycle.

Since G is transitive, there exists g ∈ G such that g(j) = n;
then G 3 gtg−1 =

(
g(i), g(j)

)
, so WLOG j = n.

Then for all x ∈ Z, G 3 cxtc−x =
(
cx(i), cx(n)

)
=
(
cx(i), n

)
,

so G 3 (k , n) for all k < n.

But then G 3 (u, n)(v , n)(u, n) = (u, v) for all u, v , and those
generate Sn.
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Proving that the Galois group is Sn
Example

Let again F (x) = x5 − x − 1 ∈ Q[x ], and G = GalQ(F ) 6 S5.

By Gauss, any factorisation of F over Q would actually
happen over Z, and thus survive mod 3; but we have seen that
F mod 3 is irreducible, so F is irreducible over Q; therefore G
is transitive.

The factorisation of F mod 2 shows G 3 g2 = (∗, ∗)(∗, ∗, ∗);
in particular G 3 g 3

2 = (∗, ∗), so WLOG (1, 2) ∈ G .

Besides, the factorisation of F mod 3 shows that G contains
a 5-cycle c (which reproves transitivity).

Replacing c with one of its powers, we may assume that
c(1) = 2, so WLOG c = (1, 2, 3, 4, 5) (relabel the other roots
if necessary). Then G 3 ct = (1, 3, 4, 5). The proposition then
shows that G = S5.
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