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The Galois group
of a polynomial




The Galois group of a polynomial

Let K be a field, and F(x) € K[x] separable of degree n (but
possibly reducible).

Then F(x) has n distinct roots ay,--- , o, € K.

Let Spl(F) = K(aq, -, a,), a splitting field of F over K.
It is a Galois extension of K: normal because splitting field,
separable because F is separable.

Definition

Galk(F) = Gal(Splx(F)/K).

Conversely, any Galois extension of K is the splitting field of
some separable polynomial ~ no loss of generality.
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Reminder: What does Galk(F) look like?

Let 0 € Galk(F) = Gal(K(ay, -, a,)/K).

@ o is completely determined by what it does to the
generators aq, - - - , a, of the extension.

@ For each j, o(«;) is again a root of F, because ¢ is a
K-automorphism so preserves rootness in K[x].

~» o induces a permutation of the roots of F, and this
permutation characterises o.

~> We view Galk(F) as a subgroup of S,.
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Orbits and transitivity

Definition (Orbit)

Let oj be a root of F. Its orbit under G = Galk(F) is
{o(cj) | o € G} C {Roots of F}.

The orbits form a partition (disjoint union) of the set of roots
of F.

Definition (Transitive)

We say that G is transitive if there is only one orbit.

Equivalently, this means that for all j, k, we can find 0 € G
such that o(a;) = ax.
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Factors = Orbits

Let O be the set of orbits. Then for each orbit o € O, the

polynomial F,(x) = H(x — a) lies in K[x] and is irreducible.
aco

Therefore, the complete factorisation of F(x) in K[x] is

(assuming F is monic, else we get the rescaled monic version).
v

Let oj be a root of F, and let o € O be its orbit. By the
theorem on Galois extensions, F,(x) is the min poly of «
over K. ]
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Factors = Orbits

Let O be the set of orbits. Then for each orbit o € O, the

polynomial F,(x) = H(x — a) lies in K[x]| and is irreducible.
aco

Therefore, the complete factorisation of F(x) in K[x] is

F(x) =TI Fo(x)

oc0

(assuming F is monic, else we get the rescaled monic version).

F is irreducible over K <= Galk(F) is transitive.
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Factors = Orbits

Let K =Q, F(x) = (x> —2)(x* — 3).
The roots of F are +£1/2, ++/3, so F is separable.

We saw in the previous chapter that # Galg(F) = 4, with
elements o : /2 — +/2, v/3 — ++/3, but never /2 — +/3

as they must preserve rootness of x> — 2, x*> — 3 € Q[x].
~» Two orbits: {v/2, —v/2} and {+/3, —/3}.

~» Two irreducible factors over QQ:

(x = V2)(x +v2) = x> =2 and (x — V3)(x +V3) = x> — 3.
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Factors = Orbits

Example

Keep the same F, but view it as an element of K[x] where

K = Q(v2).

Then Galk(F) = Gal(K(v/3)/K) ~ Z/27Z flips the sign of v/3
but can no longer touch v/2

~> 3 orbits: {\/5} {—\/5} and {\/§, —\/§}
~> 3 irreducible factors over K: x — v/2, x + /2, and x2 — 3. )
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Reminders on permutations




The example we will use in this section

Fix n € N.

We are going to review a few concepts about permutations,
i.e. elements of S,,.

In this section, for examples, we will take n = 6 and 7 € S
the permutation

1—4 2—6,3—3, 4—5 5—1 62
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Definition (Cycle)

Let k < n. A k-cycle is a permutation ¢ € S, of the form
X1 > Xo b= = X = X1

for some distinct xq, -+ ,xx € {1,2,---,n} called the support
of ¢, and such that c fixes all the other points of {1,--- ,n}.
Notation: ¢ = (x1, Xz, " , Xk).

Any permutation can be decomposed as a product of cycles
with pairwise disjoint supports.

Look at the orbits of the permutation.
(Image: we have a box of elastic bands, and we are pulling the
bands out of the box, one at a time.) [

W
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Proposition
Let o € S, have cycle decomposition k; + ko + - - -, meaning a
ki-cycle, a ko-cycle, - --. Then o has order lcm(ky, kp, - - - ).

The order of a k-cycle is k.
Besides, cycles with disjoint supports commute. O]

We have seen that the cycle decomposition of 7 is 2 + 3 (or
2+ 3+ 1 if you prefer), so the order of 7 is
lem(2,3) (or lem(2,3,1)) = 6.
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There is a sign morphism ¢ : S, — {1} characterised by
e(k-cycle) = (—1)<+1.

Mnemonic: It would have been easier if e(k-cycle) = (—1)k;
but 1-cycles are the identity so they must have sign +1.

e(r) =¢((1,4,5)(2,6)) = <((1,4,5))e((2,6)) = +1 x -1 = —1.

Permutations with ¢ = +1 are called even, and those with
¢ = —1 are called odd.

Note that a k-cycle is even when k is odd, and vice-versa. ®
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The alternating group A,

Definition (Alternating group)

The alternating group is A, = Kere < S,.

In other words, it is the subset of even permutations.
Actually, A, is normal in S, since it is a kernel.

As soon as n > 2, ¢ is surjective, so #A, = %#S,, = J

If n > 5, then A, is a simple group (has no nontrivial normal
subgroups).

Nicolas Mascot Galois theory



When is Galy(F) < Ap?




The discriminant returns

Let again F(x) € K[x] separable.

Galk(F) < A, <= disc F is a square in K.

See notes for the proof.

disc F # 0 since F is separable. ‘

Let F(x) = x3 —6x — 2 € Q[x].

Then disc F = —4(—6)% — 27(—2)? = 756 = 22337! is not

zero so F is separable, but is not a square so Galg(F) £ As.

Besides F is irreducible over Q (Eisenstein) so Galg(F) is

transitive. The classification of the subgroups of S3 shows that
GaIQ(F) = 53.




The discriminant returns

Let again F(x) € K|[x] separable.

Galk(F) < A, <= discF is a square in K.

See notes for the proof.

disc F # 0 since F is separable.

Let again F(x) = x> — 6x — 2 but seen in R[x] this time.
Then still disc F = 756 # 0, but this time disc F is a square
in R, so Galg(F) < As.

(In fact, all 3 roots of F are real, so Splg(F) = R itself, so
actually Galg(F) = {Id}.)
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Dedekind’s theorem




Dedekind’s theorem

Let F(x) € Z[x] monic and separable, and let p € N prime.
Suppose the factorisation F(x) = [[; F;(x) of F(x)

in (Z/pZ)[x] involves no repeated factors. Then Galg(F)
contains an element whose cycle decomposition is

(deg F1) + (deg Fp) + - - - .

See notes for the proof.

Since Z/pZ is perfect, F mod p has repeated factors iff.

disc(F mod p) = 0.

But disc F is essentially defined as a determinant in the coefs
of F and F’, so disc(F mod p) = disc(F) mod p, so F has
repeated factors mod p iff. p | disc F.

As disc F # 0, this only happens for finitely many p. )
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Dedekind's theorem

Let F(x) € Z[x] monic and separable, and let p € N prime.
Suppose the factorisation F(x) = [[; F;(x) of F(x)

in (Z/pZ)[x] involves no repeated factors. Then Galg(F)
contains an element whose cycle decomposition is

(deg F1) + (deg Fo) + - - - .

See notes for the proof.

We can try various primes p with the same F.
Cebotarev's densitity theorem states that when we do so, we
hit elements of Galg(F) in a uniform way.
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Practical factoring mod p

To apply Dedekind, we need to be able to factor in Z/pZ][x].

Let G(x) € Z/pZ[x].
@ G has repeated factors iff. gcd(G, G') # 1.
@ G has factor(s) of deg 1 iff. G has roots.

@ More generally, for each d € N, G has factors of
degree | d iff. ged(G,xP" — x) # 1.

The point is that xP* — x is the product of all monic irreducible
polynomials of degree | d in Z/pZ, so taking the gcd filters
the factors of G of degree | d. See notes for details. ]
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Practical factoring mod p

Let F(x) = x> — x — 1. We find disc F = 2869 = 19 x 151, so
we can use any p ¢ {19,151}.

Let us factor F mod p = 2. 212869, so no repeated factors.
The possible roots at 0 and 1, but none is a root, so no factor
of degree 1. By Euclid, we find gcd(F, x* — x) = x® + x + 1,
so we have found the irreducible factor x>+ x+ 1 of F, and F
has no more factors of degree | 2.

So F mod 2 factors as 2 + 3; by Dedekind, Galg(F) < Ss
contains an element of the form (x,*)(x, , ).

Let us now try p = 3. Again 312869 so no repeated factors.
The possible roots are 0, 1,2, but none of them is a root.
Besides, we find gcd(F,x? — x) =1, so F mod 3 actually has
no factors of degree | 2. Therefore F mod 3 is irreducible, so
Galg(F) contains a 5-cycle by Dedekind.
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Proving that the Galois group is S,

Let G < S, be transitive. If G contains a 2-cycle and an

(n — 1)-cycle, then G = S,,.

WLOG (relabel), the n — 1-cycle is ¢ = (1,2,--- ,n—1) € G.
Let t = (/,j) € G be the 2-cycle.

Since G is transitive, there exists g € G such that g(j) = n;
then G > gtg™* = (g(i),g(j)), so WLOG j = n.

Then forall x € Z, G 5 c*tc™ = (CX(I'), CX(”)) = (Cx(i)7 ’7),
so G > (k,n) for all k < n.

But then G > (u, n)(v, n)(u, n) = (u, v) for all u, v, and those
generate S,,. ]
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Proving that the Galois group is S,

Let again F(x) = x> —x —1 € Q[x], and G = Galg(F) < Ss.

By Gauss, any factorisation of F over Q would actually
happen over 7Z, and thus survive mod 3; but we have seen that
F mod 3 is irreducible, so F is irreducible over QQ; therefore G
is transitive.

The factorisation of F mod 2 shows G 3 g» = (, *)(, *, %);
in particular G > g3 = (x, %), so WLOG (1,2) € G.

Besides, the factorisation of F mod 3 shows that G contains
a 5-cycle ¢ (which reproves transitivity).

Replacing ¢ with one of its powers, we may assume that

c(1) =2, so WLOG ¢ = (1,2,3,4,5) (relabel the other roots
if necessary). Then G > ct = (1,3,4,5). The proposition then
shows that G = Ss.
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